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Abstract

Recent advances on distributed and efficient processing of high-volume
geolocation data has enabled real-time tracking and information ex-
tracting applications. Extracting road traffic information based on real-
time, user-provided GPS location data has gathered a lot of attention in
recent years. In this work, we investigate methods for extracting real-
time road traffic information based on noisy cellular localization data.
We investigate two different approaches to this problem and identify
challenges related to them. Firstly, we introduce hidden Markov mod-
els to provide a solution that deals with any type of measurement noise
that might occur during a drive in a highway. Secondly, we present a
Kalman Filter based approach which does not require any model for
driver behavior other than the basic laws of classic physics. Finally,
after presenting the infrastructure of Swisscom Big Data Platform, we
make a comparative analysis of various real-time algorithms tested on
this platform and discuss the results.
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Chapter 1

Introduction

Getting real-time road traffic information has become a very natural action
for drivers thanks to the increasing availability of this information. Espe-
cially, after the proliferation of cell phones and real-time traffic services of
big technology companies such as Google, Yandex, and Here this technol-
ogy became part of every-day use. In last decades, we witnessed a big
paradigm shift in monitoring traffic state. Traditionally, data collection is
done through road sensors, loop detectors, cameras, and emergency calls
from drivers. Clearly, this sensor technology requires a high public infras-
tructure and monitoring cost and does not provide a large coverage due
to the economic limitations. Proliferation of GPS-equipped smart phones
and 3G/4G communication technology has created an appealing alterna-
tive to traditional approach. Driven by the high precision of position esti-
mation GPS provides, traffic state estimation methods developed by many
researchers such as Work et al. (2008); Tao et al. (2012); Thiagarajan et al.
(2009). In 2008, Mobile Century experiment was performed by Amin et al.
(2008) which demonstrated that GPS-enabled cell phones can realistically be
used as traffic sensors, while preserving individuals’ privacy. Following the
success of GPS based passive methods, the idea of using alternative passive
(does not require installation of any hardware) data sources such as social
network data and cellular network data for traffic estimations is investigated
by several research groups and companies (Valerio et al., 2009c; Lai and Kuo,
2016; Tosi, 2017). Among the passive methods cellular networks has become
more prominent due to the fact that next generation cell networks have pen-
etrated to the market and their geographical coverage increased immensely
in last 10 years. As accuracy of positioning algorithms gets better and bet-
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1. Introduction

ter (Lai and Kuo, 2016), cellular operators get the chance to establish their
presence among the other traffic estimation service providers. Swisscom is
currently the market leader in Switzerland in terms of mobile service sub-
scribers (60% of all users) (Swisscom, 2016). Redzero project aims to create
extra value out of existing telecommunication infrastructure by providing
real-time traffic estimation and monitoring service to federal road office or
other service providers.

The goal of this report is to investigate challenges in traffic state estimation
in highways using cellular network data and present solutions suitable for
the nature of the problem. The organization of this report is as follows.
The following section presents the mathematical definition of the problem.
After presenting the literature review on traffic state estimation problem in
Chapter 2, we give the preliminary information about cellular network data.
In Chapter 4, we propose a Hidden Markov Model based solution for the
problem. After presenting our Kalman filter based solution Chapter 5, the
real-time system architecture allowing real-time processing is introduced in
detail. Finally, we evaluate our methods in Chapter 7 and discuss the results.

1.1 Problem Definition

A road is a line segment with an origin, an endpoint, and a direction. A road
is also represented with consequent non-overlapping continuous chunks,
which span all the road and are called sections. Therefore, we represent
a road R with R = {s1, s2, · · · , snR}. A section si has length li, and origin pi

and a destination pi+1. Highway networks consist of a set of roads. We as-
sume that traffic state in each road is statistically independent, which lets us
compute traffic states of these roads separately and in a broadly-distributed
manner. In the rest of the report, we will assume that there is only one road,
R. without loss of generality.

Likewise, we assume that physical state of each vehicle (i.e. position, speed,
acceleration) on road R is statistically independent, which lets us compute
internal states of these vehicles separately and in a broadly-distributed man-
ner. Without loss of generality, we will assume until Chapter 6 that there is
only one user (with user id user id) on the road R.
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• pi+2•
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pi

si−1
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si+1

si+2

Figure 1.1: Sections indicated on road R

Cellular localization data consists of sequence of observations which are
obtained from the cell cites the agent’s mobile device asynchronously con-
nected. In that case the number of possible observations is limited by the
number of cell sites (this is a simplification of real life scenario because we
are ignoring the ”type” of the connection for a moment). We call the finite
set of cells C = {c1, c2, · · · , ck}. An observation event Ot is a timestamped
tuple (t, user id, event), where event belongs to C.

Traffic state mapping problem Traffic state at time t in road R is usually
represented with a mapping M = {s1 → v1, s2 → v2, · · · , snR → vnR} where
vi is li divided by the expected travel time between pi and pi+1. Given a
stream of tuples (t′, user id, event) where t′ ≤ t, computing M is is called
traffic state mapping problem.

We compute those vis by estimating unknown physical states (position and
velocity, for example) of individual vehicles. The current state estimation
problem under noisy observations is known as filtering problem (Julier et al.,
1995):

Filtering problem Without loss of generality, we consider a single vehicle
moving along the road R. Let X(ti) indicate the vehicle’s state at time ti with
respect to the origin of R. Y(ti) is the measurement of the vehicle’s state at
time ti. Given a sequence of measurements Y(t1), Y(t2), · · · , Y(tn), comput-
ing estimation of vehicle’s last state X̂(tn) is called filtering problem.
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Chapter 2

Literature Review

Vehicular traffic estimation methods are categorized by the sort of data they
require. In the literature, we see that these methods are based on either
Eulerian or Lagrangian measurements. Eulerian sensing describes the sen-
sor setting where sensor locations are fixed. Eulerian sensors such as loop
detectors, speed cameras, virtual tripwires, and speed radars has been inten-
sively used on many freeways across the world for several decades (Claudel
and Bayen, 2008; Herrera and Bayen, 2010). Following the advances in the
mobile devices technology, Lagrangian measurements, in which the sensors
are mobile, have started to be used extensively. GPS sensors in the mobile
phones and the cellular network infrastructure provided companies with
cost-effective alternative to placing sensors all over the highways (Valerio
et al., 2009a).

In the context of traffic state estimation, —similar to the measurement type—
models for processing measurement data fall into two main categories: traf-
fic flow physics and statistical methods. The latter class of models focus
on real-time speed and travel time estimation while the former, known as
second order models, yield more specific estimations such as density of the
traffic flow. Flow based models gathered a lot of attention in last decades.
Lighthill and Whitham (1955) propose a partial differential equation (LWE)
that describes the traffic flow in a road. Han et al. (2012) use LWE model
for highway traffic estimation in Lagrangian-based framework. Herrera and
Bayen (2010) extend LWE model and fuse Eulerian measurements with La-
grangian measurements using Kalman filter. Work et al. (2008) introduce a
new partial differential equation based on LWE model, as a flow model for
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2. Literature Review

Lagrangian measurements (GPS). Authors translate this PDE into a Velocity
Cell Transmission Model (CTM-v), which is a discrete-time discrete-space
nonlinear dynamical system. Similarly, Work et al. (2009) introduce an en-
semble Kalman filtering algorithm to reconstruct the state of the traffic using
GPS enabled phones. The mixture Kalman filter (Sun et al., 2003), particle
filter (Mihaylova et al., 2007; Mihaylova and Boel, 2004), unscented Kalman
filter (Mihaylova et al., 2006), extended Kalman filter (Wang and Papageor-
giou, 2005), and distributed local Kalman consensus filter (Sun and Work,
2014) based solutions are proposed for the Eulerian measurements setting
in highways. Porikli and Li (2004) estimate traffic congestion by processing
speed camera video streams using Markov models (HMM).

On the other hand, statistical methods —known as first order methods—
are gaining attention in last two decade increasingly, with the proliferation
of smart phones as traffic sensors (Herrera and Bayen, 2010). Thiagarajan
et al. (2009) propose VTrack system for travel delay estimation which uses
cell phones as WiFi and GPS localization probes. Although the main focus
of the paper is travel time estimation and energy efficiency of the sensors
used, authors present a neat HMM based map matching algorithm to esti-
mate the route driven by agents. Tao et al. (2012) propose a real-time traffic
state estimation framework using A-GPS (Assisted GPS) mobile phones. The
framework collects positioning and tracking information from users using
A-GPS, produces individual position and speed estimates, aggregates the
results and displays them on users’ cell phones. Authors use a simulation
to refine their model as it provides ”ground truth” locations and speeds of
probes. Yoon et al. (2007) advocate Bayesian framework for traffic state es-
timation provided that GPS location data is available. Instead of tracking
and detecting speeds of individual probes, authors show that after analyz-
ing historical data, irregular driving patterns and anomalies in the usual
traffic flow can be detected using algorithm such as maximum likelihood
and maximum a posteriori estimation.

Bolla and Davoli (2000) is the first paper known to us which attempt to
use cellular network infrastructure for road traffic estimation. Authors use
simulations to show their methodology is capable of estimating vehicle den-
sity, vehicle velocity, and vehicle flow within 5% error in average across the
time and space. (Valerio et al., 2009b) investigate the idea of using cellular
network in depth and present a cellular-based road monitoring framework
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which influence the framework we use in this project. In Chapter 6, we lay
emphasis on the roadmap authors point out.

Cheng et al. (2006), and Schneider (2005) suggest using handover mecha-
nism for computing average traffic speed. Cheng et al. (2006) implement this
idea by presenting two Bayesian framework based road traffic estimation al-
gorithm. The first algorithm is based on first-order traffic models. Since the
first order traffic model is linear, authors propose using either Kalman or
Particle filter to estimate state variables. Authors designed a particle filter
for the second-order traffic model.

Discussion

In this section, we present how traffic state estimation problem is approached
by previous works. We show that the classic approach for traffic state estima-
tion has been using traffic flow physics and Eulerian measurements until the
proliferation the smart phones as a localization probe. Smart phones allow a
cheap alternative to expensive loop detectors as they can collect Lagrangian
measurements such as GPS, WiFi, and cellular localization. Even though the
potential of using cellular network for traffic estimation is put forward by
several researchers, there is still lack of investigation of comparative analysis,
and application in real scenarios. Therefore, we conclude that an in-depth
analysis on how to build a real-time system in a real-life situation still makes
up an interesting case for traffic state estimation research.

7





Chapter 3

Preliminaries

3.1 Characterization of Localization Data

In the context of cellular positioning, translating observation events to coor-
dinates of locations in the road can be achieved through different strategies.
One strategy is the following: each observation is mapped to a close shape
in the map. That area represents the coverage of the observed cell tower.
Then, each point in the road becomes associated with a single cell or some
cells, (or no cell) if the point lies within the coverage radius of a cell. P(s|c)
can be set based on this coverage analysis.

The main problem with this approach is that radius and coverage informa-
tion cannot be obtained reliably due to several reasons such as geography of
the area in question, or fluctuations of the signal power. Therefore, obtain-
ing the distribution P(s|c) is not possible by relying on only the geography
and specifications of cell cites.

The second approach is to empirically sample the distribution P(s|c) by
making measurements along the road and saving the observation data for
its further use to estimate P(s|c).

Drive Traces A drive trace T is a sequence of road position and observa-
tion pair denoted as (X(t1), C1), (X(t2), C2), · · · , (X(tk), Ck) where Cis are
random variables with sample space C. Practically, the road position X(t) is
obtained via a localization medium which is more sensitive than cellular lo-
calization, typically GPS, and is matched to the road using a map-matching
algorithm.
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c1

c2

c3

T1

Figure 3.1: An example case showing the coverage of three cell sites c1,c2, and c3, a road, and a
drive trace T1 along the road. Each black point along the road represents a position-observation
pair. In each pair, the innermost cell cite that encloses the observation point is observed.

Given a set of drive traces T = {T1, T2, · · · , TN}, estimation of discrete dis-
tribution P(s|c), represented by P̃(s|c), is calculated through the standard
histogram to distribution transformation:

P̃r(sj|ci) =
|{k ∈ {1, 2, ..., M} : (X(tk), ci) ∈ Tu}|

Z(ci)
(3.1)

where X(tk) ∈ sj, Tu is union of all drive traces in T, M is number of
observation pairs in Tu, and Z(ci) is a normalization factor.

Depending on the placement of cell-cites in the area, P̃(s|c) can display
multi-modal character the due to overlaps or due to the geometry (see Fig-
ure 3.1). Therefore, it is hard to make assumptions (like Gaussian) on the
characteristics of the observation noise in real life situations.

3.2 Handovers

Handover is a mechanism that transfers the ongoing connection of a cell
phone from one cellular tower to another. The trigger for this event is the
changes in the signal level. Based on these changes (usually occurs when
the cell phone is moving), the network centrally transfers connection of the
phone to another station. Handover takes place the in areas being covered
by two or more base stations. Compared to the whole area of coverage for a
cellular tower, the handover areas are smaller and are found in the borders
of the coverage (See Figure 3.3). Therefore, handover events indicate higher
certainty with regard to the location of the vehicle compared to the other
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0

1

points along the road where c1 is observed

co
un

ts

Histogram of observations of c1

Figure 3.2: Histogram of observations of c1 from the example above. We can assume that each
bin in this histogram is corresponding into a segment. The example shows that the distribution
can be multi-modal.

events. Handover events are similar to the other type of events received by
base station:

E = (user id, cell id, timestamp, handover indicator)

Handover Areas

Figure 3.3: Some section of a highway passing through handover areas of nearby cells.

We exploit this useful property of handover events. In our algorithms, cell
towers are associated with the portions of the highways they cover so that,
when an event from a cell phone is received we can roughly localize the
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device. We perform this mapping twice for each cell tower: one for handover
events and one for non-handover events. Naturally, handover events will
indicate a higher degree of certainty.
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Chapter 4

The First Approach: Hidden Markov

Models

As discussed in Section 1.1, the speed estimates per road section can be
computed from individual speed or position estimates of the agents on the
road.

4.1 Hidden Markov models

Hidden Markov models (HMMs) are special type of Bayesian networks,
where underlying Markovian process are hidden from the observer and the
hidden states are observed through observations which are conditionally in-
dependent from rest of the process, given the hidden state. S1, S2, · · · , Sn

are states of the underlying Markov chain and are hidden from the observer.
O1, O2, · · · , On are observed variables where Pr(On|S1:nO1:n−1) = Pr(On|Sn).
Hidden Markov model assumes that observations are sampled at a constant
rate, which makes t a discrete variable. The period of these observation
sequence is denoted by ∆t.

Hidden S1 S2 S3

O1 O2 O3Observed

. . .. . .

Figure 4.1: The Bayesian network which demonstrates conditional independence relations for
hidden Markov model.
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4. The First Approach: Hidden Markov Models

Hidden Markov models are useful to compute the most likely sequence of
S1, S2, · · · , Sn when we have no direct access to those variables. We have
access to the state transition probabilities of underlying Markov process and
the distribution P(O|S). Viterbi and forward-backward algorithms are two
algorithms that compute the most likely sequence of hidden variables.

In order to have the correct setup for a HMM based solution for filtering
problem, we discuss three aspects of HMMs.

4.1.1 State definition and Markov chain transition probabilities

The very first assumption for HMM is that underlying stochastic process
must satisfy Markov property. It is intuitive to include the road segment
that a person is situated to the state definition of the Markov process. How-
ever this state definition is not sufficient alone for satisfying Markov prop-
erty: the probability distribution of next state depends on the agent’s current
velocity. Therefore, in the minimal scenario, we need to include agent’s ve-
locity in the state definition. One can consider including acceleration in state
definition too; however, this approach has two drawbacks. (1) This implies
a bigger state space, raising up efficiency concerns. (2) Also, since the obser-
vations are very noisy, making correct predictions on the second derivative
of the observed variable is very hard.

We assume that road is divided into continuous equal length segments (they
differ from sections due to the fact that segments have equal length), given in
the sorted order s1, s2, ·, sm. So the states of the Markov chain are St = (st, vt)

where st is the road segment and vt is velocity. vt is a discrete variable too:
the continuous velocity spectrum is discretized into several speed profiles in
order to reduce the state space. So, each vt corresponds to a range of speed
values (i.e. 0-60 km/h), which we call speed profile.

Being inspired from the notion of inertia in classical mechanics, the transi-
tion probabilities are assigned according to the following principles:

Conservation of speed: agents have tendency to preserve their speed pro-
files.

Obeying the speed limits: agents follow the speed limits of the highway.

14



4.1. Hidden Markov models

Although we propose using a transition assignment scheme following above
criteria, finding more mathematically robust and sound scheme for specify-
ing the transition probabilities is a future work. In Appendix A, an example
Markov chain following the principles above is given.

4.1.2 Observation probabilities

In real life scenario, the observation of a vehicle in the road at time t only
depends on its position. That is, the observation does not depend on the
velocity of the vehicle (statistically independent). Therefore P̃r(ct|st) =

P̃r(ct|st, vt). However, P̃(c|s) is not known directly. We derive this distri-
bution from P̃(s|c).

P̃r(cj|si) =
P̃r(si|cj) · P̃r(cj)

P̃r(si)
, from Bayes rule

=
P̃r(si|cj) · P̃r(cj)

∑
k

P̃r(si, ck)

=
P̃r(si|cj) · P̃r(cj)

∑
k

P̃r(si|ck)P̃r(ck)

P̃r(cj)’s are obtained through their occurrence frequency in drivetraces.

4.1.3 Event quantization and synchronization

Hidden Markov model is a useful tool for filtering problems when observa-
tions are fed with a constant frequency. In our real time speed estimation
problem, the observations are streaming in asynchronous manner and re-
ceiving observations from users at a constant rate is never the case. So the
biggest challenge in modeling our position and speed estimation problem
as hidden Markov model is effectively process asynchronous observation
updates. Discretization of observation timestamps introduces some error in
the computation. This error decreases with increasing sampling frequency.
However, this frequency cannot be increased arbitrarily, since we are unable
to capture small changes in position due to the large noise margin in our
observations.

Another challenge is to handle erasures of messages (observations) resulting
from the missing observations at time t. In other words, we need a mecha-

15



4. The First Approach: Hidden Markov Models

nism to handle the case where there is no observation made in an update
period in the stream. We propose a solution in Section 4.2 by altering the
underlying Bayesian network and giving an algorithm which is a variation
of Forward algorithm.

4.2 Forward Algorithm, Extension, and Adaptation to

Real Time Processing

4.2.1 Forward Algorithm

Forward algorithm is a dynamic programming algorithm which computes
the most likely hidden state at time t that results in the sequence of observa-
tions.

The goal of the forward algorithm is to compute the joint probability
Pr(Sn, O1, · · · , On). We use dynamic programming to store intermediate
states during the recursive calculation of this joint probability. The recursive
formula is found as follows:

αn(Sn) : = Pr(Sn, O1, · · · , On) (definition)

(4.1)

αn(Sn) = ∑
Sn−1

Pr(Sn−1, Sn, O1, · · · , On) (marginalization)

= ∑
Sn−1

Pr(Sn, On|Sn−1, O1, · · · , On−1)

· Pr(Sn−1, O1, · · · , On−1) (conditional prob.)

= ∑
Sn−1

Pr(Sn, On|Sn−1, O1, · · · , On−1)

· αn−1(Sn−1) (Eq. 4.1)

= ∑
Sn−1

Pr(Sn|Sn−1, O1, · · · , On−1)

· Pr(On|Sn, Sn−1, O1, · · · , On−1)

· αn−1(Sn−1) (conditional prob.)

= Pr(On|Sn) · ∑
Sn−1

Pr(Sn|Sn−1)αn−1(Sn−1) (cond. independence)

(4.2)
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Hidden S1 S2 S3

O1 O2 O3Observed

. . .. . .

E1 E2 E3 . . .Erasure

Figure 4.2: The Bayesian network of extended hidden Markov model in presence of erasures.

After computing the joint probability αn(Sn) for every state Sn can possibly
be, the most likely state turns out the one that maximizes αn(Sn).

4.2.2 Handling Erasures by Extending the Model and Forward Al-

gorithm

To establish the mathematical ground for erasures, the erasure observation
event is introduced, represented by ε. Consequently, the observation event
set C = c1, c2, · · · extends to Ce = C ∪ {ε}. We extend the Bayesian network
of HMM with binary random variables E1, E2, .. where Et represents whether
erasure takes place at time step t (See Fig. 4.2). The probability distributions
are given as follows: for every i, P(Oi|Si, Ei = 0) = P(Oi|Si), Pr(Oi =

ε|Si, Ei = 1) = 1, and Pr(Oi 6= ε|Si, Ei = 1) = 0.

Thanks to the introduction of erasures, the time periods without observation
event is filled with ε. One can derive the recurrence relation for forward
algorithm with this setup as

αn(Sn) = Pr(On|Sn, En) · ∑
Sn−1

Pr(Sn|Sn−1)αn−1(Sn−1)

which boils down to:

αn(Sn) =

Pr(On|Sn) ·Q On 6= ε

Q On = ε

17



4. The First Approach: Hidden Markov Models

where Q = ∑
Sn−1

Pr(Sn|Sn−1)αn−1(Sn−1).

4.2.3 Practical Aspects

Forward algorithm given above has time complexity of O(nm2) where n is
the length of the sequence of observations and m is the number of states in
Markov chain. Provided the assumptions that

(1) in filtering problem, the agents are traveling in reasonable speeds and
(2) the road is long enough such that n� d where d is the maximum degree
of the graph representation of underlying Markov chain

hold, time complexity of the implementation can be reduced to O(nmd) by,
instead of a sparse matrix, using a dense matrix to keep transition probabil-
ities.

18



Chapter 5

The Second Approach: Kalman Filter

Kalman filter is one of the most acclaimed and widespread algorithms used
for stochastic estimation from noisy state measurements. Provided that cer-
tain conditions are met, such as characteristic of the noise, the algorithm
computes estimates with minimum mean squared error. In Appendix B, we
give a simple derivation for Kalman filter that proves the minimum mean
squared error condition is satisfied. Kalman filter has some commonalities
and differences with Hidden Markov Model. These two models are pri-
mary methods for solving filtering problem. On the other hand, Kalman
filter presumes that the state space of the hidden variables is continuous
and all hidden and observed variables follows a (multivariate) Gaussian dis-
tribution; whereas in Hidden Markov model, the state space of the hidden
variable are discrete and there is no assumption on the characteristics of the
distribution of hidden and observation variables.

5.1 The Algorithm

Kalman filter operates in two consequent stages that are called ”Predict” and
”Update”. The variables in the following equations are given below.

• x̂k ∈ Rn: The estimation of the state vector containing the terms of
interest for the system at time-step k given all observations until time-
step k including the one at k. In other terms, it is so-called a posteriori
estimate.

• x̂−k ∈ Rn: The estimation of the state vector containing the terms of
interest for the system at time-step k given all observations until time-
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5. The Second Approach: Kalman Filter

step k − 1 including the one at k − 1. In other terms, it is so-called a
priori estimate.

• A ∈ Rnxn: State transition matrix which relates consequent state vec-
tors.

• uk ∈ Rl : The (optional) control input for the system. It contains any
controllable terms in the system which alter the terms in the state vec-
tor.

• B ∈ Rnxl : It relates the control input to the state x.

• P−k ∈ Rnxn: It is a priori estimate error covariance. In fact, P−k =

E[(xk − x̂−k )(xk − x̂−k )
T].

• Pk ∈ Rnxn: It is a posteriori estimate error covariance. In fact, Pk =

E[(xk − x̂k)(xk − x̂k)
T].

• Q ∈ Rnxn: It is (optional) process noise covariance. The error in the
process is distributed with N(0, Q).

• zk ∈ Rm: The measurement vector is the collection of the measure-
ments of the system.

• H ∈ Rnxm: It relates the state vector to the measurement vector.

• R ∈ Rmxm: It is the measurement noise covariance. The error in the
measurement is distributed with N(0, R).

Table 5.1: Kalman Filter ”Predict” stage

x̂−k = A · x̂k−1 + B · uk (5.1)

P−k = A · Pk−1 ·AT + Q (5.2)

5.2 Applying Kalman Filter to Cellular Localization Prob-

lem

?? In Section 3.1, we have shown that cellular localization data can have a
multi-modal distribution. However, Gaussian noise is still a good approx-

20



5.2. Applying Kalman Filter to Cellular Localization Problem

Table 5.2: Kalman Filter ”Update” stage

K = P−k ·H
T · (H · P−k ·H

T + R)−1 (5.3)
x̂k = x̂−k + K · (zk −H · x̂−k ) (5.4)
Pk = (I−K ·H) · P−k (5.5)

imation to the measurement noise in most of the real life scenarios. From
this viewpoint, we can define filtering problem in terms of Kalman algo-
rithm. From simple equations of motion,

xk = xk−1 + ẋk−1 · ∆t

ẋk = ẋk−1

we can derive the following relation:

xk = A · xk−1

where

A =

[
1 ∆t
0 1

]

and ∆t is the time difference between step k− 1 and k. Note that the time
difference between time-steps can be arbitrary. So A changes in every up-
date.

The control input uk can be added to the model in order to reflect the agents’
behavior (such as respecting speed limits) or other factors. We consider
using uk in our application in future.

In cellular localization scheme we are discussing in this paper, only the po-
sition can be measured. As a result of this, measurement vector is defined
as zk =

[
E(Xk|Ck)

]
where Ck is the random variable of the observed cell

and Xk is the random variable for the position. The distribution P(Xk|Ck) is
sampled in the same way as it is done in Section 3.1. The slight difference is
that this time positions are not mapped to road sections in drivetraces since
we do not require discretization anymore.
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5. The Second Approach: Kalman Filter

Similarly, measurement error is given as Rk =
[
Var(Xk|Ck)

]
. In order to

avoid the errors arising from the biased sampling in the drivetraces, we set
a lower-bound rmin on the variance of the measurement noise. In particular,
we set Rk =

[
min

(
Var(Xk|Ck), rmin

)]
. With this setting of Rk, we are fitting

a Gaussian distribution on top of P(s|c). Mean of this Gaussian is zk and its
variance is Rk.

We set initial values x̂0 := [z0 E[v0]]T and

P0 :=

[
R0 0
0 Var(v0)

]

where v0 is the random variable of the speed of the driver initially.

As we discussed in Appendix B, x̂0 := [z0 E[v0]]T guarantees that our filter
is unbiased under the assumption that the measurement noise is Gaussian.
We select the entries in P0 with values reflecting variability of the position
and the speed of the agent. Unfortunately, we do not have access to the
statistics of v0 directly. Here, we propose two options: the first is to as-
sume that, given the speed limit L, for the road v0 has a normal distribution
with mean L/2 km/h and a variance value that would imply that with 95%
confidence, the driver travels with a speed between 0-L km/h.

The second and more advanced approach would be to infer statistics of
v0 using the last speed estimation produced in previous iterations of the
algorithm for the section covering the point z0. For instance, consider the
following scenario: we get our first observation for a car. There exists a
section s such that z0 ∈ s holds. Assuming that there have been other cars
that are estimated to be located at s in last 15 minutes, we can use estimates
for those cars to get some idea about the level of congestion in the section.

5.3 Subsequent Section Interpolation

Kalman filter requires nothing other than the underlying physical principles
of the system observed. In cellular localization case, we model the underly-
ing physics of the system with two equations: one for the position and one
for the speed of the driver. This is, however, a very simplistic view on the ac-
tual dynamics of the cars moving across the highway. As our observations
contain only the position, and have high variability, there is no evidence
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5.3. Subsequent Section Interpolation

that replacing this simplistic model in Kalman filter can yield better estima-
tions. In fact, we can deploy a more advanced model using the output of
the Kalman filter to describe people’s driving pattern.

A spline function is a piecewise function that consists of polynomial pieces
joined together. Spline functions satisfy continuity in zeroth, first, second
and so on depending on the degree of the spline. For example, the piecewise
linear function is a spline of degree 1 which is linear polynomials joined to-
gether to achieve continuity in zeroth derivative (the function itself). Spline
of degree 3 is the most used function in the family of spline functions.

The points t0 < t1 < . . . < tk we are fitting a function to is called knots. The
explicit form of a spline is,

S(x) =



S(0)(x) x ∈ [t0, t1]

S(1)(x) x ∈ [t1, t2]
...

S(k−1)(x) x ∈ [tk−1, tk]

(5.6)

In nth order spline, each of these pieces S(i) are at most nth order polynomi-
als:

S(0)(x) = a(0)0 + a(0)1 x + a(0)2 x2 + · · ·+ a(0)n−1xn−1 + a(0)n xn (5.7)

and S, S′, S′′, · · · , S(k−1) is continuous in the domain [t0, tk].

Spline interpolation is a form of interpolation in which, interpolated curve
(of 3 or higher) is a spline and curvature of the curve is minimized (one
can imagine that the curve always follows the minimum gradient in the
curvature formula). The curvature of the curve y = S(x) is given by:

k =
ÿ

(1 + ẏ2)3/2 (5.8)

Spline interpolation is a useful approximation to driver behavior in the road
because:

• 3 or higher order spline produces continuous speed and acceleration
profile.

23



5. The Second Approach: Kalman Filter

• It gives the smoothest curve.

We compute cubic spline (degree three) on the data points collected from
Kalman algorithm (See Figure 5.1). The x-axis of the spline curve is the
position of a probe. The y-axis of the spline is velocity of the probe (See
Figure 5.2). Due to the requirement that knots must be in increasing order,
we compute longest increasing subsequence of driver’s recent driving his-
tory (Note that we cannot change the order of the data points as it has to be
sorted by time as well). For each driver, Algorithm 1 computes speed map
for the sections the driver covered in last 150 seconds. Cubic spline allows
us computing speeds for the sections that does not cover any data point in
drivers’ history. Speed map for each user is aggregated in the last stage —
and beyond the scope of the Algorithm 1—. The final speed estimates for
each section is determined based on this aggregated speed maps.

Kalman Filter Cubic Spline
y x̂

+
x̂′

Figure 5.1: Block diagram showing how interpolation is performed
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Figure 5.2: Visualisation of spline interpolation on an example drive on the road.
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5. The Second Approach: Kalman Filter

Algorithm 1 Cubic Spline Subsequent Section Interpolation
Input: history: [x̂1, . . . , x̂k] . Old Kalman states
Input: batch: [x̂k+1, . . . , x̂n] . New Kalman states
Input: road: [s1, s2, . . . , sm] . Array of sections in the road
Output: speedMap: [s1 → v1, . . . , sm → vm] . Map from section to velocity

1: function estimateSpeeds

2: Compute Longest Increasing Subsequence w.r.t. x (a.k.a position) on
combined history and batch sequences. Replace history and batch with
their monotonic subsequences.

3: if batch is empty or batch and history have less then 3 elements in total
then

4: batchSections← compute the sections corresponding to x compo-
nent in every x̂i in batch

5: return the mapping between batchSections and ẋ component in
every x̂i in batch

6: else
7: cubicSpline ← compute position-versus-velocity cubic spline for

all states in history and batch combined
8: x0 ← x component of the first state in history and batch combined
9: xe ← x component of the last state in batch

10: spannedSections← find all sections in road between x0 and xe
11: spannedSectionsSpeeds ← compute interpolated speeds for the

mid-point of every section in spannedSection using cubicSpline
12: speedMap ← the map from spannedSections to

spannedSectionsSpeeds
13: mergedMap ← combine speedMap and all items in history and

batch giving priority to their ẋ components.
14: return unpublished estimates of mergedMap . The estimates for

last 150 seconds
15: end if
16: end function
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Chapter 6

Real-time Processing System

Architecture

Swisscom is the leading mobile service provider in Switzerland with 6.612.000
subscribers (Swisscom, 2016). Swisscom also provides data-driven solutions
and insights through the analysis of the data created by this mobile net-
work. For this purpose, Swisscom built a big data infrastructure that allows
reliable access to the high throughput data streaming through its national
telecommunication network. This infrastructure, which is based on tech-
nologies such as Kafka, Spark, Spark Streaming, and Scala allows process-
ing millions of event coming from mobile network. In this chapter, we are
going to present this infrastructure and its components.

6.1 Swisscom Big Data Architecture

6.1.1 Kafka

Apache Kafka is a distributed streaming platform that is run as a cluster on
one or more services. It stores streams of records in categories called topics.
4G events in Swisscom telecommunication network are published to these
topics.

6.1.2 Spark Streaming

Spark is an open-source cluster computing engine for Big Data. The engine
provides high speed, fault tolerant computation. Spark Streaming is an ex-
tension of Spark API that processes live data streams. Spark Streaming job
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6. Real-time Processing System Architecture

Figure 6.1: Swisscom Big Data Platform System Architecture.

connects to the Kafka stream which consists of events in the form of:

E = (user id, (timestamp, cell id, event type)) (6.1)

Even though Kafka stream is continuous, the incoming data is partitioned
by Spark Streaming into 150 seconds long chunks that are called batches.
Batches are the main operational unit of Spark Streaming applications and
in the context of cellular localization and speed estimation, this batching
mechanism is the reason why estimations are published with 150 seconds of
delay. Spark Streaming application for traffic speed estimation is structured
as a pipeline of four stages. These stages are seen in Figure 6.1.2 and can be
summarized as follows:

1. Not all the mobile phone users in the network is traveling in a partic-
ular highway. There is no point in performing complex computations
on the events that are not coming from any of the cell towers covering
some portion of the highway of interest. In addition, some residents
may get connected to the base stations that is visible from a particu-
lar highway if they are working or living nearby the highway. These
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6.1. Swisscom Big Data Architecture

Kafka Topic

Qualification Filter

((user id1, (timestamp, cell id, event type), · · · )

History Ac-
cumulation

((user id1, ((timestamp, cell id, event type), qual f lag)), · · · )

Speed Estima-
tion Algorithm

((user id, user history), · · · )

State Aggregation

(s1 → (ẋ11, ẋ12, · · · ), s2 → (ẋ21, ẋ22, · · · ), · · · , sm → (ẋm1, ẋm2, · · · ))

Elastic Search

(s1 → ẋ1, s2 → ẋ2, · · · , sm → ẋm)

Sp
ar

k
St

re
am
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g

Figure 6.2: Spark Streaming Processing Pipeline. Pipeline consists of 5 stages.

events need to be filtered out as well. In short, qualification filter aims
to discard all the events that are definitely not coming from drivers in
the highway.

2. For all qualified users, the event history is stored in a non-persistent
data structure (which is deleted after a certain period of inactivity) for
speed estimation algorithms.

3. Position and speed estimation algorithms perform their computations
using history of events and any static data that could be needed for
estimation. The algorithms we propose in this report run in this step of
the pipeline. The output of this stage is a mapping from road sections
to a list of traffic speed estimates for that section.

4. The list of state estimates coming from different users are aggregated
to a one to one mapping from road sections to traffic flow speed in
that section. Usually, one section receives multiple estimates from mul-
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6. Real-time Processing System Architecture

tiple users. Since every section has to be mapped into a final speed, a
fusion/selection algorithm reduces the list of estimates into a single
estimate. One simple selection algorithm is to return the upper quar-
tile (a.k.a. third quartile or 75th percentile) of the list of estimates for
a section as the final estimation.

6.1.3 Hadoop/YARN

The Hadoop Distributed File System (HDFS) is an broadly fault-tolerant dis-
tributed file system designed to operate on commodity machines, scale hor-
izontally, and provide high throughput access to application data. The set
of computers on which HDFS is deployed is called Hadoop cluster. HDFS
is suitable for applications that have large data sets: a typical file in HDFS
is gigabytes to terabytes in size. YARN is the next generation of Hadoop
data operating system providing cluster resource management, running on
a Hadoop cluster. It acts like an interface between HDFS processing units
and various data processing applications such as Spark.

In Swisscom Big Data Architecture, applications operate on a Hadoop clus-
ter. Kafka stream of historical network events are kept in HDFS. Also, the
Spark Streaming Application we present in section 6.1.2, which runs on
Hadoop/YARN cluster, can be run on offline data by reading old network
events from the HDFS and can write debugging information into there.

6.1.4 Elasticsearch

Elasticsearch is an open-source, broadly-distributable, readily-scalable, enterprise-
grade search engine (Vanderzyden, 2015). Accessible through an extensive
and elaborate API, Elasticsearch can power extremely fast searches that sup-
port data discovery applications. In big data system architecture given in
Figure 6.1, speed estimates produced by Spark Streaming application is writ-
ten to an Elasticsearch index. Any client application accesses this data and
visualizes it through RED0API.

6.2 Discussion

In this chapter, we give details of Swisscom Big Data Platform system ar-
chitecture. The primary goal for explaining this architecture is to give an
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6.2. Discussion

insight as to how any road traffic estimation algorithm we propose can be
implemented in a Swisscom product. We believe that putting the methods
we propose in Chapter 4 and 5 into a context of a real, sophisticated traf-
fic state estimation application will be beneficial for the reader in a great
extent.
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Chapter 7

Experiments and Results

We face several challenges in evaluating the algorithms we propose in pre-
vious chapters. The first and the biggest challenge is lack of availability of
ground truth for the real traffic state. There is no reliable method for getting
the ground truth information in such a real-time system we operate: posing
reliable estimations is our primary goal in the first place. Fortunately, there
are several things we can still do: (1) comparing estimates against other real-
time estimation services, (2) running algorithms on offline data as if it was
real-time, and comparing the results against GPS drive traces. The key point
in the latter approach is that those traces must be separate from the traces
we use for generation of prior distributions; otherwise we may fall in the
trap of over-fitting. The second challenge is our incapability of testing our
algorithms in different scenarios that may take place in traffic; because, as
we are not operating on a simulation, we have no control over the what is
happening in the highway. One sometimes need to wait a couple of days in
order to see a congestion in the highway.

7.1 The setup

7.1.1 Algorithms in comparison

In our experiments, we benchmark three methods against each other. Those
methods are as follows:

Kalman filter & spline interpolation: This is the implementation of the
approach we propose in Chapter 5. We will call this algorithm as kspline in
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the rest of this chapter.

HMM based estimation: This is the implementation of the approach we
propose in Chapter 4. We will call this algorithm as hmm.

Swisscom Redzero: Swisscom Redzero is the traffic speed estimation so-
lution that has been developed by Swisscom and currently used in their
product. It is based on the same system architecture that we mention in
Chapter 6. However, position and speeds of the vehicles are determined by
a heuristic algorithm. We can summarize the logic heuristic algorithm uses
in two parts:

• Vehicle positioning is performed using a static discrete probability dis-
tribution P(s|c). This distribution is a combination of P̃(s|c) and a
prior distribution.

• Vehicle speed is estimated by comparing consequent cell events ci, ci+1

and probability distributions they induce. The distribution of vehicle’s
displacement can be computed using convolution of two distributions
P(s|ci) and P(s|ci+1). As the time difference between two cell events
is known, the distribution of vehicle’s speed can be computed. If the
distribution has high variance, the algorithm goes back in history and
compares ci−1, ci+1. This continues until a confident estimation can be
done.

Aside from these three methods, we use the following 3rd party services for
comparison:

• Google Maps Api allows us to query for estimated drive time between
two points in real-time.

• Here Traffic is another service providing a similar kind of functionality.

• Tomtom is a telematics company specialized in traffic, navigation, and
mapping products. We use their Live Traffic Api service.

7.1.2 System Configuration

The specs of the Hadoop cluster these algorithms run is:

• VCores total: 1152
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• Memory total: 5.06 TB

• Maximum Allocation: memory:221184, vCores:48

• Number of Nodes: 36

7.1.3 The monitored highway

Experiments have been performed on Bern-Zurich highway. The sections
referred in these experiments extend between the following geographical
coordinates:

• Section 2000: (47.4332260N, 8.3580800E), (47.4306180N, 8.3633180E)

• Section 2432: (47.4288930N, 8.3684140E), (47.4309710N, 8.3628500E)

• Section 3294: (47.2491710N, 7.6664580E), (47.2518780N, 7.6721930E)

• Section 3683: (47.2519770N, 7.6721320E), (47.2492810N, 7.6663790E)

• Section 3284: (47.2241120N, 7.6112610E), (47.2254170N, 7.6140340E)

• Section 3693: (47.2263210N, 7.6160310E), (47.2241890N, 7.6111950E)

7.2 Experiments

7.2.1 Comparison of Time Series

Figure 7.1 shows time series of Google, Tomtom, Here, and Algorithm 1
during the moderate congestion that took place in Section 3693 on 12 August
2017. In the early morning and in the evening, average speeds reach 120
km/h (speed limit) in all algorihms, which is the usual flow speed when
there is no traffic. All methods respond to the congestion that started around
11:00 AM.

Figure 7.2 shows the comparison between speed estimations from kspline,
redzero, and hmm algorithms for Section 3693 and Section 3284 within the
same time-frame as that of Figure 7.1. We observe that the algorithm hmm
fails to detect the congestion. Kspline and redzero display similar results in
these two sections.
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Figure 7.1: Speed estimations from Google, Tomtom, Here, and Algorithm 1 (referred as kspline)
for Section 3693 is monitored during a day with moderate congestion. All of these methods
predict the congestion.

7.2.2 Coverage Analysis

In the ideal scenario, traffic state estimation is expected to cover all parts
of the highway: that is, it is supposed to output speed estimates for all the
sections. Coverage of an algorithm is defined as below:

100 · the number of sections some estimate is output
the total number of sections in the highway

Figure 7.3 and Table 7.1 show the analysis of Bern-Zurich highway coverage
for redzero, kspline, and hmm algorithms, measured on 09 August 2017.
Kspline has superior coverage compared to redzero algorithm, almost reach-
ing to 100% in average (see Table 7.1).

Method Coverage in avg.
kspline 96.857
hmm 95.001
redzero 83.566

Table 7.1: Coverage values have been averaged over time.
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Figure 7.2: Speed estimations from kspline, redzero, and hmm algorithms for Section 3693 and
Section 3284 is monitored during a day with moderate congestion. HMM fails to detect the
congestion.

Figure 7.3: Coverage of an algorithm indicates the fraction of sections whose level of conges-
tion is output. Bern-Zurich highway coverage comparison between hmm, kspline, and redzero
algorithms shows that kspline is very close to having full coverage over the highway.

7.2.3 Speed Aggregation - Percentiles

In the last step of the Spark streaming pipeline (see Figure 6.1.2), the state
estimates coming from different users are aggregated to a one to one map-
ping from road sections to traffic flow speed in that section. When one
section receives multiple estimates from multiple users, a simple selection
algorithm for determining the final estimation is to use percentiles values.
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We employ 50th, 75th, and 85th percentile strategies on top of kspline algo-
rithm. Kspline algorithm with different percentile strategies are put into a
test in which the speed estimation output is compared against each other
and against external reference. We monitor the highway using three 3rd party
services, Google, Here, and Tomtom as well. We call the average of the
expected drive times across the section estimated by those services as exter-
nal reference. That corresponds to the harmonic average of speed estimates
those services provide.

Figure 7.4: The list of speed estimates coming from different users are aggregated to a one
to one mapping from road sections to traffic flow speed in that section. 50th, 75th, and 85th
percentile of the group of individual estimations selected as the final estimation for the road
section. We observe that in section 3693, 85th percentile approximates the external reference
while in section 3284, we observe the opposite behavior.

Figure 7.4 illustrates the outcome of the test sections 3284 and 3693 was
monitored for 9 hours. In section 3284, 50th percentile (median) approach
gives the best approximation to external reference. On the other hand, in
section 3693, 85th percentile gives the best approximation until 17:00. This
might be the result of the followings:

• P(s|c) might be sampled with a bias in cells covering either of sec-
tions 3284 and 3693. Differences in skewness of P(s|c) may result in
underestimating or overestimating the actual traffic flow in a section.

• The external reference might be biased in one of these sections.
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7.3 Discussion

The biggest challenge in performing experiments with quantitative results
is the absence of ground truth data. Without ground truth information, it is
impossible to compute an error rate for different algorithms. However, evi-
denced from the first experiment, cellular data based methods successfully
detect the level of congestion in some sections. The Kalman filter based al-
gorithm, kspline, and redzero algorithm overshadow HMM based approach.
HMM based algorithm we propose does not react to any level of congestion.
However, kspline allows us to reach near 100% coverage across Bern-Zurich
highway, which is not achievable by Swisscom Redzero. This illustrates that
better coverage is achievable without sacrificing precision.

Until we get access to some sort of ground truth data, sections can be sep-
arately asdjusted to use the percentile that reduces the distance between
output of 3rd party solutions and kspline, and thus the bias can be reverted
(or be matched with that of 3rd party services) in some degree.
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Chapter 8

Conclusion

In this report, we examined algorithms for extracting real-time traffic infor-
mation on highways based on noisy cellular localization data. We gave an ex-
ample of a pattern we confronted with in drivetraces: the distribution P(s|c)
was not following a normal distribution. We proposed two algorithms for
speed estimation: each had their own advantages and disadvantages. Even
though Hidden Markov model is not good at dealing with asynchronous ob-
servations, we handled that constraint by discretizing time and introducing
erasures. Other disadvantages of HMM based solution, (1) time complex-
ity, (2) requirement for a Markov chain which imitates drivers’ behavior in
the highway, remained. The experiments revealed that those disadvantages
impaired the quality of the estimation.

On the other hand, Kalman filter based solution, when combined with spline
interpolation, produces high quality estimates with a high coverage across
the highway. We advised to reduce the bias of Kalman algorithm by (1)
increasing volume of offline training using drivetraces, (2) picking the opti-
mal percentile for each section in speed aggregation stage. However, correct
interpretation of the events from cells with skewed or bi-modal probability
distribution using Kalman or another filter is a future work. Likewise, using
a more complex Kalman filter model, for instance, introducing process error
and user inputs to the current model is a future work.

We proposed two methods for estimating v0 with minimum amount of
bias. Implementing the second and more complex method and comparing
it against the first method is a future work.
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Appendix A

The Markov Chain Modeling of Active

Drivers in the Highway

We start with quantizing the possible range of speeds a driver can reach.
Three speed profiles we use correspond into following range of speeds:

1. SLOW = 0-42 km/h

2. MID = 42-90 km/h

3. FAST = 90-150 km/h

We want to remind our assumption that road R is divided into continu-
ous equal length segments, given in the sorted order s1, s2, ·, sm. Each of
these segments have the length l (in kilometers). We call the time differ-
ence between a state transition δ(Si, Si+1) as ∆t (in hours). The transition
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probabilities are given as follows:

Pr((si+k, SLOW)|(si, SLOW)) = 4/Z ∀k : 0 ≤ kl ≤ 48∆t

Pr((si+k, SLOW)|(si, MID)) = 1/Z ∀k : 0 ≤ kl ≤ 48∆t

Pr((si+k, SLOW)|(si, FAST)) = 1/Z ∀k : 0 ≤ kl ≤ 48∆t

Pr((si+k, MID)|(si, SLOW)) = 1/Z ∀k : 48∆t < kl ≤ 90∆t

Pr((si+k, MID)|(si, MID)) = 4/Z ∀k : 48∆t < kl ≤ 90∆t

Pr((si+k, MID)|(si, FAST)) = 1/Z ∀k : 48∆t < kl ≤ 90∆t

Pr((si+k, FAST)|(si, SLOW)) = 1/Z ∀k : 90∆t < kl ≤ 120∆t

Pr((si+k, FAST)|(si, MID)) = 1/Z ∀k : 90∆t < kl ≤ 120∆t

Pr((si+k, FAST)|(si, FAST)) = 4/Z ∀k : 90∆t < kl ≤ 120∆t

Pr((si+k, FAST)|(si, SLOW)) = 1/2Z ∀k : 120∆t < kl ≤ 150∆t

Pr((si+k, FAST)|(si, MID)) = 1/2Z ∀k : 120∆t < kl ≤ 150∆t

Pr((si+k, FAST)|(si, FAST)) = 2/Z ∀k : 120∆t < kl ≤ 150∆t

where Z is a normalizing constant whose value depends on variables such
as i, ∆t, l and the speed mode.

This Markov chain follows principles we give in Chapter 4 because:

Conservation of speed: Transition probability within the same speed pro-
file has the weight 4/Z, while switching into another speed profile has the
weight 1/Z.

Obeying the speed limits: Transition probability to the sections too far
away that it would imply that your speed is above 150 km/h is zero. The
range from 120 km/h to 150 km/h is possible, but has half of the weight of
the range 90 km/h - 120 km/h.
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Appendix B

Simple Derivation of Kalman Filter

Kalman filter is an optimal —optimal in a sense that it minimizes the mean
square error (MSE) of the estimated parameters— , unbiased, linear, and a
recursive filter. The goal of this section is to provide the reader with a simple
and intuitive derivation of Kalman filter. We feel the necessity to write this
tutorial since the other tutorials and derivations sacrifice either completeness
or simplicity. The reader can refer to the algorithm description in Section 5.1
for the meaning of the variables we use in this section. (The derivation of
we present in this section is based on the following works Grewal and Bass,
1995; Reid, 2001; Cazan, 2011).

A minimum variance unbiased estimator (MVUE) is a MSE estimator which
is unbiased. In other terms,

x̂k = argmin
x̂k

E
[
‖x̂k − xk‖2

l2

]
(B.1)

E[x̂k] = E[xk] (B.2)

Right hand side of the Equation B.1 is called variance of error. Bias-variance
tradeoff for MSE is (for simple derivation, see Lebanon, 2010):

MSE(θ) = Var(θ) + [Bias(θ)]2 (B.3)

Therefore among the unbiased estimators, the estimator that minimizes the
variance is the optimal MSE estimator. For this reason, as long as Equation
B.1 and Equation B.2 holds, Kalman filter is a MSE estimator.
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B. Simple Derivation of Kalman Filter

In Kalman filter, the evolution of the state and observation is modeled by
the following linear equations:

xk = Ak−1 · xk−1 + wk−1 (B.4)

zk = Hkxk + vk (B.5)

where wk is Gaussian process noise with distribution N(0, Qk). and vk is
Gaussian measurement noise with distribution N(0, Rk). For sake of a sim-
ple and easy-to-read analysis, we drop Buk term (control input) from the
state evolution equation. We assume that the wi and vi are i.i.d. processes,
and wk and vl are uncorrelated for every k and l.

We assume that E[x̂0] = E[x0] holds; because, later on we will show that this
assumption is required for proving unbiasedness of Kalman filter.

Our first observation is that the filter we are trying to derive is linear, which
provides the intuition that a posteriori state estimate can be written as linear
combination of a priori state estimate and the observation value:

x̂k = K′kx̂−k + Kkzk (B.6)

where Kk and K′k are weighing matrices (for the proof that optimal estimator
in linear form is equivalent to optimal nonlinear estimator, the reader can
refer to Grewal and Bass (1995)). So our main goal is to find values of these
gain matrices which satisfy Equation B.1.

Theorem B.1 In linear MVUE, K′k + KkHk = I

Proof As inductive step, assume that E[x̂k−1] = E[xk−1] holds.

x̂k = K′kx̂−k + Kkzk (B.7)

= K′kx̂−k + Kk(Hkxk + vk) (B.8)

We take expectation of both sides,

E[x̂k] = K′kE[x̂−k ] + KkHkE[xk] + KkE[vk] (B.9)

= K′kE[x̂−k ] + KkHkE[xk] (B.10)
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From Equation B.4 and the inductive step,

E[xk] = E[Ak−1xk−1 + wk−1] (B.11)

= E[Ak−1x̂k−1] = E[x̂−k ] (B.12)

Therefore,

E[x̂k] = (K′k + KkHk)E[xk] (B.13)

K′k + KkHk = I ensures that x̂k unbiased provided that the base case for the
induction holds. By assuming E[x̂0] = E[x0], we conclude the proof. �

Corollary B.2 By substituting K′k with I − KkHk, we get that our unbiased esti-
mator takes the form:

x̂k = x̂−k + Kk(zk −Hkx̂−k ) (B.14)

The matrix Kk in this equation is called Kalman gain. We need to identify
optimal Kalman gain to minimize variance error. We introduce variables for
ease of calculations,

ek = x̂k − xk (B.15)

e−k = x̂−k − xk (B.16)

A priori and a posteriori estimation error become,

P−k = E[e−k (e
−
k )

T] Pk = E[ekeT
k ] (B.17)

Using these variables, we can express the variance of error too,

E
[
‖x̂k − xk‖2

l2

]
= Pk = E[eT

k ek] = tr(Pk) (B.18)

Theorem B.3 The optimal value of the Kalman gain Kk that minimizes tr(Pk) is,

Kk = P−k HT(HP−k HT + R)−1 (B.19)

Proof We start with finding the relation between ek and e−k ,

ek = x̂k − xk (B.20)

= x̂−k + Kk(zk −Hkx̂−k )− xk (B.21)

= x̂−k − xk + Kk(Hkxk + vk −Hkx̂−k ) (B.22)

= (I−KkHk)e−k + Kkvk (B.23)
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B. Simple Derivation of Kalman Filter

Then the value of ekeT
k becomes,

ekeT
k =

(
(I−KkHk)e−k + Kkvk

)(
(I−KkHk)e−k + Kkvk

)T
(B.24)

= (I−KkHk)e−k (e
−
k )

T(I−KkHk)
T−

(I−KkHk)e−k vT
k KT

k −Kkvk(e−k )
T(I−KkHk)

T+

KkvkvT
k KT

k (B.25)

We take expectation of both sides. Note that e−k and vk are uncorrelated.

E[ekeT
k ] = (I−KkHk)E[e−k (e

−
k )

T](I−KkHk)
T+

KkE[vkvT
k ]K

T
k (B.26)

Pk = (I−KkHk)P−k (I−KkHk)
T + KkRkKT

k (B.27)

We derived the equation relating the a posteriori estimation error covariance
to a priori estimation error covariance, Kalman gain and measurement co-
variance.

Lemma B.4 For a symmetric matrix B, a differentiable function F(A) with its
scalar derivative f (·),

∂tr
(

F(A)BF(A)T)
∂A

= 2F(A)B f (A) (see Petersen et al., 2008) (B.28)

Using Lemma B.4, we differentiate Equation B.27 with respect to Kalman
gain and set equal to zero in order to find the Kalman gain matrix which
minimize tr(Pk),

∂
(
(I−KkHk)P−k (I−KkHk)

T + KkRkKT
k

)
∂Kk

= 0 (B.29)

− 2(I−KkHk)P−k HT
k + 2KkRk = 0 (B.30)

After making necessary substitutions, we find,

Kk = P−k HT(HP−k HT + R)−1 (B.31)
�

As we now know the optimal Kalman gain, we can revisit a posteriori error
covariance equation (Equation B.27), which is so-called Joseph form, for the
purpose of getting a simpler version.
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(I−KkHk)P−k (I−KkHk)
T + KkRkKT

k = P−k −

KkHkP−k − P−k HT
k KT

k + KkHkP−k HT
k KT

k + KkRkKT
k (B.32)

= (I−KkHk)P−k − P−k HT
k KT

k +

Kk(HkP−k HT
k + Rk)KT

k (B.33)

= (I−KkHk)P−k − P−k HT
k KT

k + P−k HT
k KT

k (B.34)

= (I−KkHk)P−k (B.35)

This gives us the last one of update stage equations of Kalman filter. We
derived all update stage equations. We also know how to compute a priori
estimates based on Bayesian approach (although we didn’t mention explic-
itly, but used in our analysis on Equation B.12),

x̂−k = Ak−1 · x̂k−1 (B.36)

The last piece of the puzzle is an equation relating a priori error covariance
in time-step k to a posteriori error covariance in time-step k − 1. Luckily,
deriving this equation is simple,

P−k = E[(xk − x̂−k )(xk − x̂−k )
T] (B.37)

= E[(Ak−1xk−1 + wk−1 −Ak−1x̂−k−1)(Ak−1xk−1 + wk−1 −Ak−1x̂−k−1)
T]

(B.38)

= E[(Ak−1ek−1 + wk−1)(Ak−1ek−1 + wk−1)
T] (B.39)

= Ak−1E[ek−1(ek−1)
T]AT

k−1 + Ak−1E[ek−1wT
k−1]+

E[wk−1(ek−1)
T]AT

k−1 + E[wk−1wT
k−1] (B.40)

= Ak−1Pk−1AT
k−1 + Qk−1 f (B.41)

Notice that we exploited the fact that ek−1 and wk−1 are uncorrelated.

This equation concludes the derivation of the Kalman filter.
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